Bacillus subtilis Type I antitoxin SR6 Promotes Degradation of Toxin yonT mRNA and Is Required to Prevent Toxic yoyJ Overexpression

نویسندگان

  • Celine Reif
  • Charlotte Löser
  • Sabine Brantl
چکیده

yonT/SR6 is the second type I toxin-antitoxin (TA) system encoded on prophage SPβ in the B. subtilis chromosome. The yonT ORF specifying a 58 aa toxin is transcribed on a polycistronic mRNA under control of the yonT promoter. The antitoxin SR6 is a 100 nt antisense RNA that overlaps yonT at its 3' end and the downstream gene yoyJ encoding a second, much weaker, toxin at its 5' end. SR6 displays a half-life of >60 min, whereas yonT mRNA is less stable with a half-life of ≈8 min. SR6 is in significant excess over yonT mRNA except in minimal medium with glucose. It interacts with the 3' UTR of yonT mRNA, thereby promoting its degradation by RNase III. By contrast, SR6 does not affect the amount or half-life of yoyJ mRNA. However, in its absence, a yoyJ overexpression plasmid could not be established in Bacillus subtilis suggesting that SR6 inhibits yoyJ translation by directly binding to its ribosome-binding site. While the amounts of both yonT RNA and SR6 were affected by vancomycin, manganese, heat-shock and ethanol stress as well as iron limitation, oxygen stress decreased only the amount of SR6.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small untranslated RNA antitoxin in Bacillus subtilis.

Toxin-antitoxin (TA) modules are pairs of genes in which one member encodes a toxin that is neutralized or whose synthesis is prevented by the action of the product of the second gene, an antitoxin, which is either protein or RNA. We now report the identification of a TA module in the chromosome of Bacillus subtilis in which the antitoxin is an antisense RNA. The antitoxin, which is called RatA...

متن کامل

One antitoxin—two functions: SR4 controls toxin mRNA decay and translation

Type I toxin-antitoxin systems encoded on bacterial chromosomes became the focus of research during the past years. However, little is known in terms of structural requirements, kinetics of interaction with their targets and regulatory mechanisms of the antitoxin RNAs. Here, we present a combined in vitro and in vivo analysis of the bsrG/SR4 type I toxin-antitoxin system from Bacillus subtilis....

متن کامل

Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families

Small, hydrophobic proteins whose synthesis is repressed by small RNAs (sRNAs), denoted type I toxin-antitoxin modules, were first discovered on plasmids where they regulate plasmid stability, but were subsequently found on a few bacterial chromosomes. We used exhaustive PSI-BLAST and TBLASTN searches across 774 bacterial genomes to identify homologs of known type I toxins. These searches subst...

متن کامل

Analysis of the Bacillus cereus SpoIIS antitoxin-toxin system reveals its three-component nature

Programmed cell death in bacteria is generally associated with two-component toxin-antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a membrane-bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system which is a three-component system, harboring an additional gene sp...

متن کامل

sRNA Antitoxins: More than One Way to Repress a Toxin

Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018